Tag: carbide

Synthesis, characterization and thermodynamic stability of nanostructured ε-iron carbonitride powder prepared by a solid-state mechanochemical route

Authors: Seyyed Amin Rounaghi, Danny E. P. Vanpoucke, Elaheh Esmaeili, Sergio Scudino, and Jürgen Eckert
Journal: J. Alloys Compd. 778, 327-336 (2019)
doi: 10.1016/j.jallcom.2018.11.007
IF(2019): 4.650
export: bibtex
pdf: <JAlloysCompd>

Abstract

Nanostructured epsilon iron carbonitride (ε-Fe3CxN1-x, x ∼ 0.05) powder with high purity (>97 wt%) was synthesized through a simple mechanochemical reaction between metallic iron and melamine. Various characterization techniques were employed to investigate the chemical and physical characteristics of the milling intermediates and the final products. The thermodynamic stability of the different phases in the Fe-C-N ternary system, including nitrogen and carbon doped structures were studied through density functional theory (DFT) calculations. A Boltzmann-distribution model was developed to qualitatively assess the stability and the proportion of the different milling products vs. milling energy. The theoretical and experimental results revealed that the milling products mainly comprise the ε-Fe3CxN1-xphase with a mean crystallite size of around 15 nm and a trace of amorphous carbonmaterial. The thermal stability and magnetic properties of the milling products were thoroughly investigated. The synthesized ε-Fe3CxN1-x exhibited thermal stabilities up to 473 K and 673 K in air and argon atmospheres, respectively, and soft magnetic properties with a saturation magnetization of around 125 emu/g.

Permanent link to this article: https://dannyvanpoucke.be/paper_epsilonfenc-en/