Tag: DFT

The impact of strain on the GeV-color center in diamond

Authors: Thijs G.I. van Wijk, E. Aylin Melan, Rani Mary Joy, Emerick Y. Guillaume, Paulius Pobedinskas, Ken Haenen, and Danny E.P. Vanpoucke
Journal: Carbon 234, 119928 (2025)
doi: 10.1016/j.carbon.2024.119928
IF(2024): 10.5
export: bibtex
pdf: <Carbon>

 

Graphical abstract strained GeV0.
Graphical Abstract: Schematic representation of the impact of hydrostatic and linear strain on the Zero Phonon Line of the neutral GeV defect in diamond.

Abstract

Color centers in diamond, such as the GeV center, are promising candidates for quantum-based applications. Here, we investigate the impact of strain on the zero-phonon line (ZPL) position of GeV0. Both hydrostatic and linear strain are modeled using density functional theory for GeV0concentrations of 1.61 % down to 0.10 %. We present qualitative and quantitative differences between the two strain types: for hydrostatic tensile and compressive strain, red- and blue-shifted ZPL positions are expected, respectively, with a linear relation between the ZPL shift and the experienced stress. By calculating the ZPL shift for varying GeV0 concentrations, a shift of 0.15 nm/GPa (0.38 meV/GPa) is obtained at experimentally relevant concentrations using a hybrid functional. In contrast, only red-shifted ZPL are found for tensile and compressive linear strain along the ⟨100⟩ direction. The calculated ZPL shift exceeds that of hydrostatic strain by at least one order of magnitude, with a significant difference between tensile and compressive strains: 3.2 and 4.8 nm/GPa (8.1 and 11.7 meV/GPa), respectively. In addition, a peak broadening is expected
due to the lifted degeneracy of the GeV0 eg state, calculated to be about 6 meV/GPa. These calculated results are placed in perspective with experimental observations, showing values of ZPL shifts and splittings of comparable magnitude.

Permanent link to this article: https://dannyvanpoucke.be/2025-paper-strainedgev-en/

New QuATOMs group member: Minh-Thu Bui

Since the first of January 2025, the QuATOMs group has been strengthened with a new member: Minh-Thu Bui.

She is an expert in polymer chemistry, with a MSc in Polymers for advanced Technologies from the university of Grénoble. The coming four years she will be working on the QuantumLignin project. In this project, she’ll investigate the structure-property relations of lignin building blocks, with the aim of creating an additive model suitable for predicting the properties of mixed lignin samples. With her life motto: “Don’t wait for the perfect moment. Take the moment and make it perfect.” I’m sure we can expect great things to happen in the theoretical lignin field, the coming years.

Welcome to the QuATOMs team, we look forward to your enthusiasm and the intuition you bring to the team.

Permanent link to this article: https://dannyvanpoucke.be/new-quatoms-group-member-minh-thu-bui/

The devil in the details: lessons from Li6PS5X for robust high-throughput workflows

Authors: Asif Iqbal Bhatti, Sandeep Kumar, Catharina Jaeken, Michael Sluydts, Danny E.P. Vanpoucke, and Stefaan Cottenier
Journal: Journal of Materials Chemistry A 13, 526-539 (2025)
doi: 10.1039/D4TA06603K
IF(2024): 10.7
export: bibtex
pdf: <J.Mat.Chem.A>

 

Graphical Abstract: Schematic representation of the LPS material and the variation of results obtained due to slight changes in settings within a High Throughput workflow.

Abstract

High-throughput computational screening has become a powerful tool in materials science for identifying promising candidates for specific applications. However, the effectiveness of these methods relies heavily on the accuracy and appropriateness of the underlying models and assumptions. In this study, we use the popular argyrodite solid-state electrolyte family Li6PS5X (X = Cl, Br, I) as a case study to critically examine key steps in high-throughput workflows and highlight potential pitfalls. We demonstrate some of these pitfalls by highlighting the importance of careful structural considerations, including symmetry breaking and site disorder, and examine the difference between 0 K thermodynamic stability and finite-temperature stability based on temperature-dependent Gibbs free energy calculations. Furthermore, we explore the implications of these findings for the ranking of candidate materials in a mini-throughput study in a search space of isovalent analogs to Li6PS5Cl. As a result of these findings, our work underscores the need for balanced trade-offs between computational efficiency and accuracy in high-throughput screenings, and offers guidance for designing more robust workflows that can better bridge the gap between computational predictions and experimental realities.

Permanent link to this article: https://dannyvanpoucke.be/2025-paper-thedevilinthedetails-en/

New QuATOMs group member

During the last year, Esin Aylin Melan worked hard at her MSc Thesis within the QuATOMs group. Her research focus was centered on the impact of strain on the zero-phonon-line of the GeV color center in diamond. This work she presented, together with Thijs van Wijk, at the SBDD conference in Hasselt, and was presented as well at both the BPS and EMRS spring meeting of 2024. Before the summer she gave her (very good and enthusiastic) final presentation of the MSc thesis results, bringing her first real research project to good end. (Paper will follow later 🙂 )

Recently, she also received the great news that she was awarded a bilateral PhD Scholarship between UHasselt & UNamur. So from September first, she has started working on the modeling of color centers in diamond and oxides for the coming four years. Welcome to the QuATOMs team, and congratulations on the scholarship. We look forward to the enthusiasm and insights you’ll bring to the team.

Permanent link to this article: https://dannyvanpoucke.be/new-quatoms-group-member/

First-principles investigation of hydrogen-related reactions on (100)–(2×1)∶H diamond surfaces

Authors: Emerick Y. Guillaume, Danny E. P. Vanpoucke, Rozita Rouzbahani, Luna Pratali Maffei, Matteo Pelucchi, Yoann Olivier, Luc Henrard, & Ken Haenen
Journal: Carbon 222, 118949 (2024)
doi: 10.1016/j.carbon.2024.118949
IF(2022): 10.9
export: bibtex
pdf: <Carbon>

 

Graphical Abstract for Carbon publication on the adsorption of H onto diamond.
Graphical Abstract: (left) Ball-and-stick representation of aH adsorption/desorption reaction mediated through a H radical. (right) Monte Carlo estimates of the H coverage of the diamond surface at different temperatures based on quantum mechanically determined reaction barriers and reaction rates.

Abstract

Hydrogen radical attacks and subsequent hydrogen migrations are considered to play an important role in the atomic-scale mechanisms of diamond chemical vapour deposition growth. We perform a comprehensive analysis of the reactions involving H-radical and vacancies on H-passivated diamond surfaces exposed to hydrogen radical-rich atmosphere. By means of first principles calculations—density functional theory and climbing image nudged elastic band method—transition states related to these mechanisms are identified and characterised. In addition, accurate reaction rates are computed using variational transition state theory. Together, these methods provide—for a broad range of temperatures and hydrogen radical concentrations—a picture of the relative likelihood of the migration or radical attack processes, along with a statistical description of the hydrogen coverage fraction of the (100) H-passivated surface, refining earlier results via a more thorough analysis of the processes at stake. Additionally, the migration of H-vacancy is shown to be anisotropic, and occurring preferentially across the dimer rows of the reconstructed surface. The approach used in this work can be generalised to other crystallographic orientations of diamond surfaces or other semiconductors.

Permanent link to this article: https://dannyvanpoucke.be/2024-paper-hadsorption-emerick-en/

Cover Nature Reviews Physics

Authors: Emanuele Bosoni, Louis Beal, Marnik Bercx, Peter Blaha, Stefan Blügel, Jens Bröder, Martin Callsen, Stefaan Cottenier, Augustin Degomme, Vladimir Dikan, Kristjan Eimre, Espen Flage-Larsen, Marco Fornari, Alberto Garcia, Luigi Genovese, Matteo Giantomassi, Sebastiaan P. Huber, Henning Janssen, Georg Kastlunger, Matthias Krack, Georg Kresse, Thomas D. Kühne, Kurt Lejaeghere, Georg K. H. Madsen, Martijn Marsman, Nicola Marzari, Gregor Michalicek, Hossein Mirhosseini, Tiziano M. A. Müller, Guido Petretto, Chris J. Pickard, Samuel Poncé, Gian-Marco Rignanese, Oleg Rubel, Thomas Ruh, Michael Sluydts, Danny E.P. Vanpoucke, Sudarshan Vijay, Michael Wolloch, Daniel Wortmann, Aliaksandr V. Yakutovich, Jusong Yu, Austin Zadoks, Bonan Zhu, and Giovanni Pizzi
Journal: Nature Reviews Physics 6(1), (2024)
doi: web only
IF(2021): 36.273
export: NA
pdf: <NatRevPhys>

Abstract

The cover of this issue shows an artistic representation of the equations of state of the periodic table elements, calculated using two all-electron codes in each of the 10 crystal structure configurations shown on the table. The cover image is based on the Perspective Article How to verify the precision of density-functional-theory implementations via reproducible and universal workflows by E. Bosoni et al., https://doi.org/10.1038/s42254-023-00655-3.  (The related paper can be found here.)

Cover Nature Reviews Physics: Accuracy of DFT modeling in solids

 

Permanent link to this article: https://dannyvanpoucke.be/paper2024_accuracycover-en/

How to verify the precision of density-functional-theory implementations via reproducible and universal workflows

Authors: Emanuele Bosoni, Louis Beal, Marnik Bercx, Peter Blaha, Stefan Blügel, Jens Bröder, Martin Callsen, Stefaan Cottenier, Augustin Degomme, Vladimir Dikan, Kristjan Eimre, Espen Flage-Larsen, Marco Fornari, Alberto Garcia, Luigi Genovese, Matteo Giantomassi, Sebastiaan P. Huber, Henning Janssen, Georg Kastlunger, Matthias Krack, Georg Kresse, Thomas D. Kühne, Kurt Lejaeghere, Georg K. H. Madsen, Martijn Marsman, Nicola Marzari, Gregor Michalicek, Hossein Mirhosseini, Tiziano M. A. Müller, Guido Petretto, Chris J. Pickard, Samuel Poncé, Gian-Marco Rignanese, Oleg Rubel, Thomas Ruh, Michael Sluydts, Danny E.P. Vanpoucke, Sudarshan Vijay, Michael Wolloch, Daniel Wortmann, Aliaksandr V. Yakutovich, Jusong Yu, Austin Zadoks, Bonan Zhu, and Giovanni Pizzi
Journal: Nature Reviews Physics 6(1), 45-58 (2024)
doi: 10.1038/s42254-023-00655-3
IF(2021): 36.273
export: bibtex
pdf: <NatRevPhys>
<ArXiv:2305.17274>

 

“We hope our dataset will be a reference for the field for years to come,” says Giovanni Pizzi, leader of the Materials Software and Data Group at the Paul Scherrer Institute PSI, who led the study. (Image: Paul Scherrer Insitute / Giovanni Pizzi)
Graphical Abstract: “We hope our dataset will be a reference for the field for years to come,” says Giovanni Pizzi, leader of the Materials Software and Data Group at the Paul Scherrer Institute PSI, who led the study. (Image: Paul Scherrer Insitute / Giovanni Pizzi)

Abstract

Density-functional theory methods and codes adopting periodic boundary conditions are extensively used in condensed matter physics and materials science research. In 2016, their precision (how well properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. In this Expert Recommendation, we discuss recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z = 1 to 96 and characterizing 10 prototypical cubic compounds for each element: four unaries and six oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Finally, we discuss the extent to which the current results for total energies can be reused for different goals.

Permanent link to this article: https://dannyvanpoucke.be/paper-aiidaconsortium2023-en/

Materiomics Chronicles: week 8

After the complexities of week seven, week eight brings the last lecture week of the first quarter of the academic year. After this week, the students of our materiomics program at UHasselt will start studying for a first batch of exams. It also means with this week, their basic courses come to an end and they have all been brought up to speed and to a similar level, needed for the continuation of their study in the materiomics program.

In the bachelor program, the third bachelor chemistry students ended their detailed study of the He atom in the course quantum and computational chemistry with the investigation of its excited states. They learned about the splitting of in singlet and triplet states as well as Fermi-holes and heaps.

Vulcanoplot

Vulcano-plot of small data model quality of model instances in a large ensemble. Taken from our paperSmall Data Materials Design with Machine Learning: When the Average Model Knows Best“, J. Appl. Phys. 128, 054901 (2020)

The first mater materiomics students got their last lecture in the course Fundamentals of materials modeling, where we looked into some examples of application of machine learning in materials research. We also brought all levels of the course together and imagined how to link these in a multiscale project. Starting from the example of a windmill we discussed the application of computational materials modeling at different scales. For the course Properties of functional materials, the third and final presentation and discussion was held, now focusing on characterization methods. The second master students had response lectures for the courses on Density Functional Theory and Machine learning and artificial intelligence in modern materials science where the various topics of the self study were discussed (e.g., concepts of Neural Networks in case of the latter).

At the end of this week, we have added another 8h of live lectures, putting our semester total at 99h of live lectures. With the workload of the first master materiomics coming to an end, the following chronicles will be biweekly. Upwards and onward to week 9&10.

 

Permanent link to this article: https://dannyvanpoucke.be/materiomics-chronicles-week-8/

Materiomics Chronicles: week 6

After surviving week five, the sixth week of the academic year feels almost relaxing. However, all the effort is worth it, and I was happy to hear the students of our materiomics program at UHasselt appreciate the effort put into creating their classes, during an evaluation meeting.

The evolution of the Z position of a Be atom on Graphene. Periodic cell with 10 Angstrom vacuum along z direction. Z position is given in direct coordinates (0...1), with the graphene sheet positioned at z=0 (=1). The Be atom is van der Waals bonded, and moves through the vacuum to attach to the "bottom" side of the sheet, though originally positioned at the "top" side.

The evolution of the Z position of a Be atom on Graphene. Periodic cell with 10 Angstrom vacuum along z direction. Z position is given in direct coordinates (0…1), with the graphene sheet positioned at z=0 (=1). The Be atom is van der Waals bonded, and moves through the vacuum to attach to the “bottom” side of the sheet, though originally positioned at the “top” side.

Though the week was not as intense as the week before does not mean there were no classes at all. The second bachelor students in chemistry continued their studies of particles in simple potentials though the study of a particle in a square infinite potential well during the course introduction to quantum chemistry. During the course quantum and computational chemistry, the third bachelor chemistry, the He atom was now studied by means of the variational method, introducing the concepts of effective nuclear charge and shielding in a natural way.

While the bachelor students could take a backseat approach during the lectures (except for calculating some bbracket integrals), the master materiomics students had to do most of the heavy lifting during their classes. For the course on Density Functional Theory there was response lecture as well as a lab-session where they studied the dynamics of Be on and around graphene, while the first master students had their second presentation & discussion session on the computational aspects of the papers studied in the course Properties of functional materials.

At the end of this week, we added another 11h of live classes and ~2h of video lectures, putting our semester total at 85h of live lectures. Upwards and onward to week 7.

Permanent link to this article: https://dannyvanpoucke.be/materiomics-chronicles-week-6/

Materiomics Chronicles: week 3

In week three of the academic year at the chemistry and materiomics programs of UHasselt, the students started to put their freshly gained new knowledge of weeks 1 and 2 into practice with a number of exercise classes.

For the second bachelor chemistry students, this meant performing their first calculations within the context of the course introduction to quantum chemistry. At this point this is still very mathematical (e.g., calculating commutators) and abstract (e.g., normalizing a wave function or calculating the probability of finding a particle, given a simple wave function), but this will change, and chemical/physical meaning will slowly be introduced into the mathematical formalism. For the third bachelor chemistry, the course quantum and computational chemistry continued with perturbation theory, and we started with the variational method as well. The latter was introduced through the example of the H atom, for which the exact variational ground state was recovered starting from a well chosen trial wave function.

Infinite polymethylene glycol (POM) chain.

Ball-and-stick representation of an infinite polymethylene glycol (POM) chain.

In the master materiomics, the first master course fundamentals of materials modelling, dove into the details underpinning DFT introducing concepts like pseudo-potentials, the frozen-core approximation, periodic boundary conditions etc. This knowledge was then put into practice during a second exercise session working on the supercomputer, as a last preparation for the practical lab exercise the following day. During this lab, the students used the supercomputer to calculate the Young modulus of two infinite linear polymers. An intense practical session which they all executed with great courage (remember 2 weeks ago they never heard of DFT, nor had they accessed a supercomputer). Their report for this practical will be part of their grade.

For the second master materiomics, the course focused on Density Functional Theory consisted of a discussion lecture, covering the topics the students studied during their self study assignments. In addition, I recorded two video lectures for the blended learning part of the course. For the course Machine learning and artificial intelligence in modern materials science self study topics were covered in such a discussion lecture as well. In addition, the QM9 data set was investigated during an exercise session, as preparation for further detailed study.

At the end of this week, we have added another 16h of live lectures and ~1h of video lectures, putting our semester total at 35h of live lectures. Upwards and onward to week 4.

Permanent link to this article: https://dannyvanpoucke.be/materiomics-chronicles-week-3/