«

»

Oct 28

Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

Authors: Danny E. P. Vanpoucke, Jan W. Jaeken, Stijn De Baerdemacker, Kurt Lejaeghere
and Veronique Van Speybroeck
Journal: Beilstein J. Nanotechnol. 5, 1738-1748 (2014)
doi: 10.3762/bjnano.5.184
IF(2014): 2.670
export: bibtex
pdf: <Beilstein> (open access)
Graphical Abstract: (left) Spin density of anti-ferromagnetic MIL-47(V) with ferromagnetic chains. (right) Electronic band structure and density of states.
Graphical Abstract: The MIL-47(V) MOF has one unpaired electron per V site. As a result, different spin configurations are possible, several of which lead to an anti-ferromagnetic state. The spin density of an antiferromagnetic state, containing only ferromagnetic chains is shown on the left. On the right, the electronic band structure of the same system is presented.

Abstract

The geometric and electronic structure of the MIL-47(V) metal-organic framework (MOF) is investigated by using ab initio density functional theory (DFT) calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å3. The transition pressure of the pressure-induced large-pore-to-narrow-pore phase transition is calculated to be 82 MPa and 124 MPa for systems with ferromagnetic and antiferromagnetic chains, respectively. For a mixed system, the transition pressure is found to be a weighted average of the ferromagnetic and antiferromagnetic transition pressures. Mapping DFT energies onto a simple-spin Hamiltonian shows both the intra- and inter-chain coupling to be antiferromagnetic, with the latter coupling constant being two orders of magnitude smaller than the former, suggesting the MIL-47(V) to present quasi-1D behavior. The electronic structure of the different spin configurations is investigated and it shows that the band gap position varies strongly with the spin configuration. The valence and conduction bands show a clear V d-character. In addition, these bands are flat in directions orthogonal to VO6 chains, while showing dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials.

3 pings

  1. 39th ICACC: Day 2 » The Delocalized Physicist

    […] coefficients was studied for the purpose of matching them to those of other materials, and (3) Metal-Organic Frameworks, where I showed that the spin-configuration of the MIL-47(V) MOF is linked to the transition […]

  2. Annual Meeting of the Belgian Physical Society 2016 » The Delocalized Physicist

    […] explaining experimental observations. I presented results on the pressure-induced breathing of the MIL-47(V) MOF, showing how the experimentally observed S-shape of the transition-pressure-curve can be explained […]

  3. Newsflash: Book-chapter on MOFs and Zeolites en route to bookstores near you. – The Delocalized Physicist

    […] conduction, spin-filters, multiferroics, electron-phonon interactions, interactions between spin and mechanical properties,…. MOFs are a true playground for the […]

Comments have been disabled.