Tuning of CeO2 buffer layers for coated superconductors through doping

Authors: Danny E. P. Vanpoucke, Stefaan Cottenier, Veronique Van Speybroeck, Patrick Bultinck, and Isabel Van Driessche,
Journal: Appl. Surf. Sci. 260, 32-35 (2012)
doi: 10.1016/j.apsusc.2012.01.032
IF(2012): 2.112
export: bibtex
pdf: <Appl.Surf.Sci.> <arXiv>

Abstract

The appearance of microcracks in cerium oxide (CeO2) buffer layers, as used in buffer layer architectures for coated superconductors, indicates the presence of stress between this buffer layer and the substrate. This stress can originate from the differences in thermal expansion or differences in lattice parameters between the CeO2 buffer layer and the substrate. In this article, we study, by means of ab initio density functional theory calculations, the influence of group IV doping elements on the lattice parameter and bulk modulus of CeO2. Vegard’s law behavior is found for the lattice parameter in systems without oxygen vacancies, and the Shannon crystal radii for the doping elements are retrieved from the lattice expansions. We show that the lattice parameter of the doped CeO2 can be matched to that of the La2Zr2O7 coated NiW substrate substrate for dopant concentrations of about 5%, and that bulk modulus matching is either not possible or would require extreme doping concentrations.

Permanent link to this article: https://dannyvanpoucke.be/paper2012_ceo2-en/