Pt-induced nanowires on Ge(001): A density functional theory study

Authors: Danny E. P. Vanpoucke and Geert Brocks
Journal: Phys. Rev. B 81, 085410 (2010)
doi: 10.1103/PhysRevB.81.085410
IF(2010): 3.774
export: bibtex
pdf: <Phys.Rev.B> <arXiv>

Abstract

We study formation of the nanowires formed after deposition of Pt on a Ge(001) surface. The nanowires form spontaneously after high-temperature annealing. They are thermodynamically stable, only one atom wide and up to a few hundred atoms long. Ab initio density functional theory calculations are performed to identify possible structures of the Pt-Ge(001) surface with nanowires on top. A large number of structures are studied. With nanowires that are formed out of Pt or Ge dimers or mixed Pt-Ge dimers. By comparing simulated scanning tunneling microscopy images (STM) with experimental ones we model the formation of the nanowires and identify the geometries of the different phases in the formation process. We find that the formation of nanowires on a Pt-Ge(001) surface is a complex process based on increasing the Pt density in the top layers of the Ge(001) surface. Most remarkably we find the nanowires to consist of germanium dimers placed in troughs lined by mixed Pt-Ge dimer rows.

Permanent link to this article: https://dannyvanpoucke.be/paper2010_nwlong-en/