Predicting Partial Atomic Charges in Siliceous Zeolites

Authors: Jarod J. Wolffis, Danny E. P. Vanpoucke, Amit Sharma, Keith V. Lawler, and Paul M. Forster
Journal: Microporous Mesoporous Mater. 277, 184-196 (2019)
doi: 10.1016/j.micromeso.2018.10.028
IF(2019): 4.551
export: bibtex
pdf: <MicroporousMesoporousMater>

 

Partial charges in zeolites for force fields.
Graphical Abstract: Partial charges in zeolites for force fields.

Abstract

Partial atomic charge, which determines the magnitude of the Coulombic non-bonding interaction, represents a critical parameter in molecular mechanics simulations. Partial charges may also be used as a measure of physical properties of the system, i.e. covalency, acidic/catalytic sites, etc. A range of methods, both empirical and ab initio, exist for calculating partial charges in a given solid, and several of them are compared here for siliceous (pure silica) zeolites. The relationships between structure and the predicted partial charge are examined. The predicted partial charges from different methods are also compared with related experimental observations, showing that a few of the methods offer some guidance towards identifying the T-sites most likely to undergo substitution or for proton localization in acidic framework forms. Finally, we show that assigning unique calculated charges to crystallographically unique framework atoms makes an appreciable difference in simulating predicting N2 and O2 adsorption with common dispersion-repulsion parameterizations.

Permanent link to this article: https://dannyvanpoucke.be/paper_hizeolites_2018-en/

2 comments

    • RETNO ANBARINI on April 1, 2019 at 7:35 am
    • Reply

    Where can i learn more about this?

    1. Just follow the link next to “pdf” which will bring you to the published manuscript. Or you can search for the doi (also given).

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.