Tag: science and society

Start to science-communicate

Today and tomorrow, there is a 2-day summer school on science communication held at the University of Antwerp: Let’s Talk Science! During this summer school there are a large number of workshops to participate in, and lectures to attend, dealing with all aspects of science communication.

Wetenschapsbattle Trophy: Hat made by the children for the contestants of the wetenschapsbattle. Mine has diamonds and computers. 🙂

I was invited to represent Hasselt University (and science communication done by its members) during the plenary panel session starting the summer school. The goal of this plenary session was to share our experiences and thoughts on science communication. The contributions varied from hands-on examples to more abstract presentations of what to keep in mind, including useful tips. The central aim of my presentation was directed at identifying the boundary between science communication and scientific communication. Or more precisely, showing that this border may be more artificial than we are aware of. By showing that everyone’s unique in his/her expertise and discipline, I provided the link between conference presentations and presentations for the general public. I traveled through my history of science communication, starting in the middle: with the Science Battle. An event, I wrote about before, where you are asked to explain your work in 15 minutes to an audience of 6-to 12-year-olds. Then I worked my way back via my blog and contributions to “Ik heb been vraag” (such as: if you drop a penny from the Eiffel tower, will this kill someone on the ground?) to the early beginning of my research: simulating STM images. In the latter case, although I was talking to experts in their field (experimental growth and characterization), their total lack of experience in modelling and quantum mechanical simulations transformed my colleagues into “general public”. This is an important aspect to realize, not only for science communication, but also for scientific communication. As a consequence this also means that most of the tips and tricks applicable to science communication are also applicable to scientific communication.

For example: tell a coherent story. As noted by one of my favorite authors – Terry Pratchett – the human species might have better been called “Pan Narrans”, the storytelling ape. We tell stories and we remember by stories. This is also a means to make your scien(ce/tific) communication more powerful. I told the story of my passion during science explained and my lecture for de Universiteit van Vlaanderen.

A final point I touched is the question of “Why?”. Why should you do science communication? Some may note that is our duty as scientists, since we are payed with taxpayer money. But personally I believe this is not a good incentive. Science communication should originate from your own passion. It should be because you want to, instead of because you have to. If you want to, it is much easier to show you passion, show your interest, and also take the time to do it.

This brought me back to my central theme: Science communication can be simple and small. E.g. projecting simulated STM images on the wall’s of the medieval castle in Ghent (Gravensteen) during a previous edition of the Ghent Light Festival.

Simulated STM of nanowires projected on the Gravensteen (Ghent) during the 2012 Light Festival). Courtesy of Glenn Pollefeyt

Simulated STM of nanowires projected on the Gravensteen (Ghent) during the 2012 Light Festival). Courtesy of Glenn Pollefeyt

Roots of Science

Today VLIR (Flemish Inter-university Council) and the Young Academy had a conference on the future of fundamental research in Flanders: Roots of Science. We live in a world where we rely on science more and more to resolve our problems (think climate change, disease control, energy generation, …). In our bizarre world of alternative facts and fake news, science can be utterly ignored in one sentence and proposed as a magical solution in the next.

Although I am happy with the faith some have in the possibilities of science, it is important to remember that it is not magic. This has a very important consequence:

Things do not happen simply because you want them to happen.

 

Many important breakthroughs in science are what one would call serendipity (e.g., the discovery of penicillin by Fleming, development of the WWW as a side-effect of researchers wanting to share their data

at CERN in 1991,…) . In Flanders the Royal Flemish Academy and the Young Academy have written a Standpoint (an evidence-based advisory text)

discussing the need for more researcher-driven research in contrast to agenda-driven research, as they believe this is a conditio sine qua non for a healthy scientific future.

Where government-driven research focuses on resolving questions from society, researcher-driven research allows the researcher to follow his or her personal interest. This not with the primal aim of having short-te

rm return of investment, but with the aim of providing the fundamental knowledge and expertise which some day may be needed for the former. In researcher-driver research, the journey is the goal as this is where scientific progress is made by finding solutions for problems not imagined before.

Do we have to pay for this with our tax-payers money? I think we do. No-one imagined optical drives (CD, DVD, blue-ray) to become a billion euro industry while the laser was being developed in a lab. Who would have thought the transistor would play such an important role in our every-day life? And what about the first computer? Thomas Watson, President of IBM, has allegedly said in 1943: “I think there is a world market for maybe 5 computers.” And, yet, now many of us have more than 5 computers at home (including tables, smartphones,…)! The researchers working on these “inventions” did not do this with your Blue-ray player or smartphone in mind. These high impact applications are “merely” side-products of their fundamental scientific research. No-one at the time could predict this, so why should we be able to do this today? In this sense, you should see funding of fundamental research as a long term investment. Tax-money is being invested in our future, and the future of children and grandchildren. Although we do not know what will be the outcome, we know from the past that it will have an impact on our lives.

Its difficult to make predictions, especially about the future.

Let us therefor support more researcher-driven research.

 

In addition to the Standpoint, there is also a very nice video explaining the situation (with subtitles in English or Dutch, use the cogwheel to select your preference).