Category: publications

The formation of Self-Assembled Nanowire Arrays on Ge(001): a DFT study of Pt Induced Nanowire Arrays

Authors: Danny E. P. Vanpoucke and Geert Brocks
Book title: Symposium Z–Computational Nanoscience–How to Exploit Synergy between Predictive Simulations and Experiment
proceeding: Mater. Res. Soc. Symp. Proc. 1177, 1177-Z03-09 (2009)
doi: 10.1557/PROC-1177-Z03-09
export: bibtex
pdf: <MRS Proceeding> <arXiv>

Abstract

Nanowire (NW) arrays form spontaneously after high temperature annealing of a sub monolayer deposition of Pt on a Ge(001) surface. These NWs are a single atom wide, with a length limited only by the underlying beta-terrace to which they are uniquely connected. Using ab-initio density functional theory (DFT) calculations we study possible geometries of the NWs and substrate. Direct comparison to experiment is made via calculated scanning tunneling microscope (STM) images. Based on these images, geometries for the beta-terrace and the NWs are identified, and a formation path for the nanowires as function of increasing local Pt density is presented. We show the beta-terrace to be a dimer row surface reconstruction with a checkerboard pattern of Ge-Ge and Pt-Ge dimers. Most remarkably, comparison of calculated to experimental STM images shows the NWs to consist of germanium atoms embedded in the Pt-lined troughs of the underlying surface, contrary to what was assumed previously in experiments.

Formation of Pt-induced Ge atomic nanowires on Pt/Ge(001): A density functional theory study

Authors: Danny E. P. Vanpoucke and Geert Brocks
Journal: Phys. Rev. B 77, 241308 (2008)
doi: 10.1103/PhysRevB.77.241308
IF(2008): 3.322
export: bibtex
pdf: <Phys.Rev.B> <arXiv> <UTwentePublications>

Abstract

Pt deposited onto a Ge(001) surface gives rise to the spontaneous formation of atomic nanowires on a mixed Pt-Ge surface after high-temperature annealing. We study possible structures of the mixed surface and the nanowires by total energy density functional theory calculations. Experimental scanning-tunneling microscopy images are compared to the calculated local densities of states. On the basis of this comparison and the stability of the structures, we conclude that the formation of nanowires is driven by an increased concentration of Pt atoms in the Ge surface layers. Surprisingly, the atomic nanowires consist of Ge instead of Pt atoms.