Tag: Review

Review of 2020

Happy New Year

2020 will forever be the year of viruses for me and a lot of us. At Maastricht University, the year started with a university wide cyber-attack with ransomware. After the computer-viruses came the human viruses, with COVID-19 shutting down one country after the other, and shutting down education systems as well.

Hopefully 2021 will be better behaved, though we know already some of the hurdles which will make life interesting the coming year. COVID-19 is far from over, and it will take at least a year to vaccinate everyone. Furthermore, as of the first of today, the United Kingdom is no longer a part of the EU, making travel inside Europe a little harder again.

But before we launch into these new and interesting times, lets look back at 2020 one last time, keeping up with  tradition. What have I done during the last year of academic merit.

1. Publications: +6 (and currently a handful in progress)

2. Completed refereeing tasks: +17

  • Applied Physics Letters
  • Journal of Physical Chemistry (2x)
  • Computational Materials Science (2x)
  • Materials Chemistry and Physics
  • Journal of Physics: Condensed Matter (5x)
  • Diamond and Related Materials (6x)

3. Conferences & workshops in times of Corona: +3/+1 (Attended & Organised), >+4 internal 

ACOS poster prize 2020

ACOS poster prize 2020

With regard to conferences, 2020 was the year everyone came into contact with the concept of the online conference. Many conferences and events got canceled: such as TEDx@UHasselt (which will return in 2021)

  • ACOS 2020, Online, Oktober 28th, 2020 [poster presentation and video-pitch, 2nd poster prize]
  • RSC Chemical Science Symposium 2020, Online, September 29th-30th, 2020 [iposter presentation]
  • D-NL-HIT project meetings [oral presentations]
    • Virtual Partner Meeting, April 8th, 2020
    • Adhesives Pilot Branch meeting, October 7th, 2020
    • Virtual Partner Meeting, October 15th, 2020
    • UV-Curing Branch meeting, October 22nd, 2020
  • SBDD XXV, Hasselt University, Belgium, March 11th-13th, 2020 [(invited) oral presentation, poster presentation] …On Friday13th Belgium went into it’s first lock-down.
  • Pilot Branch meeting adhesives D-NL-HIT project, Maastricht University, Brighlands campus, February 26th, 2020 [Organised]

4. Science Communication & Social media:   

  • In February 2020, I finally caved and joined Twitter as @DelocalizedD .
  • Added several new repositories to my github account, with the most important ones being:
  • Started a YouTube channel (for the ACOS video pitch)

5. Current size of HIVE:

  • Continued work on a public version of HIVE at github: HIVE 4.x   (26K lines, 9 commands available)
  • 61K lines of program (code: 69 %)
  • ~100 files
  • 49 (command line) options

6. Hive-STM program:

And now, upward and onward, a new year, a fresh start.

Review of 2019

Happy New Year

2019 has come and gone. 2020 eagerly awaits getting acquainted. But first we look back one last time, trying to turn this into a old tradition. What have I done during the last year of some academic merit.

Publications: +3 (and currently +5 submitted)

 

Completed refereeing tasks: +9

  • Applied Physics Letters
  • Journal of Physics Communication
  • Super Conducting Science and Technology
  • Crystals
  • Journal of Physics: Condensed Matter (2x)
  • Diamond and Related Materials (3x)

 

Conferences & workshops: +7 (Attended) 

  • Consortium meeting D-NL-HIT, Hochschule Niederrhein, Krefeld, Germany, September 19th 2019
  • Workshop: Coatings Technology & Application of Machine Learning, Hochschule Niederrhein, Krefeld, Germany, September 2nd-6th , 2019
  • Summer School: “Let’s Talk Science”, Antwerp, Belgium, July 2nd, 2019 [invited plenary talk]
  • Summer School on Data Science, Maastricht University, The Netherlands, June 26th-28th,  2019
  • VSC-user day, Brussels, Belgium, June 4th, 2019 [poster presentation]
  • Belgian Physical Society annual meeting 2019, ULB, Brussels, May 22nd, 2019 [poster presentation]
  • SBDD XXIV, Hasselt University, Belgium, March 13th-15th, 2019

 

Science Communication Events: +3  

  • Casting Keynotes TEDxUHasselt:”The Virtual Lab”, November 26th, 2019 [first prize, TEDx talk 2020]
  • Summer School: “Let’s Talk Science”, Antwerp, Belgium, July 2nd, 2019 [invited plenary talk]
  • Universiteit van Vlaanderen: “Kan jij met je computer een snellere smartphone ontwikkelen”, February 19th, 2019 [Live presentation at UvV, Online April 1st]

 

Research Stay: +1           With Prof. Klauss-Uwe Koch, Westfälishe Hochschule, Recklinghausen, Germany, July 29th – August 2nd, 2019

PhD-students: +1             Guillaume Emerick (September 2019-August 2023,PhD student UHasselt-UNamur Project, Belgium, Awarded grant for this project)

Bachelor-students: +1   Siebe Frederix (3rd Bach. Phys., Project: Atoms in Molecules based on force partitioning)

Positions: +1                         Started working on Machine Learning at AMIBM of Maastricht University

 

Current size of HIVE:

  • Finally started a public version of HIVE at github: HIVE 4.x   (3.5K lines, 6 commands available)
  • 60K lines of program (code: 70 %)
  • ~90 files
  • 49 (command line) options

Hive-STM program:

And now, upward and onward, a new year, a fresh start.

Modeling 1D structures on semiconductor surfaces: Synergy of theory and experiment

Authors: Danny E. P. Vanpoucke
Journal: J. Phys.: Condens. Matter 26(13), 133001 (2014)
doi: 10.1088/0953-8984/26/13/133001
IF(2014): 2.346
export: bibtex
pdf: <J.Phys.Condens.Matter> <arXiv>

Abstract

Atomic scale nanowires attract enormous interest in a wide range of fields. On the one hand, due to their quasi-one-dimensional nature, they can act as an experimental testbed for exotic physics: Peierls instability, charge density waves, and Luttinger liquid behavior. On the other hand, due to their small size, they are of interest not only for future device applications in the micro-electronics industry, but also for applications regarding molecular electronics. This versatile nature makes them interesting systems to produce and study, but their size and growth conditions push both experimental production and theoretical modeling to their limits. In this review, modeling of atomic scale nanowires on semiconductor surfaces is discussed, focusing on the interplay between theory and experiment. The current state of modeling efforts on Pt- and Au-induced nanowires on Ge(001) is presented, indicating their similarities and differences. Recently discovered nanowire systems (Ir, Co, Sr) on the Ge(001) surface are also touched upon. The importance of scanning tunneling microscopy as a tool for direct comparison of theoretical and experimental data is shown, as is the power of density functional theory as an atomistic simulation approach. It becomes clear that complementary strengths of theoretical and experimental investigations are required for successful modeling of the atomistic nanowires, due to their complexity.