Helium flash: the beginning of a new chapter.

During the past two and a half years, part of being a delocalized physicist has meant for me that I had to work at one end of the country while my girlfriend and son lived at the other. Today this situation drastically changed, as I moved with my FWO-postdoctoral project from my alma mater to the University of Hasselt, where I started in the Wide Band Gap Materials group of Prof. Ken Haenen.

My delocalization will now take the form of Metal-Organic Frameworks on the one side and Diamond based materials on the other. As the sole computational solid state physicist in an otherwise entirely experimental group (and even institute) I seem to have returned to a well known configuration (At Ghent university I was initially the house-theoretician of the SCRiPTS group). Also the idea of performing calculations on diamond brings back memories, since this allotrope of carbon lives two levels above the germanium on which Pt nanowires grow. All-in-all I look forward to an exciting time. But first things first: getting my HPC credentials and data safely transported from the one end of the country to the other.

First-Principles Study of Antisite Defect Configurations in ZnGa2O4:Cr Persistent Phosphors

Authors: Arthur De Vos, Kurt Lejaeghere, Danny E. P. Vanpoucke, Jonas J. Joos, Philippe F. Smet, and Karen Hemelsoet
Journal: Inorg. Chem. 55(5), 2402-2412 (2016)
doi: 10.1021/acs.inorgchem.5b02805
IF(2016): 4.857
export: bibtex
pdf: <Inorg.Chem>
Graphical Abstract: (left) Ball-and-stick model of zinc gallate (right) density of states of Cr doped zinc gallate.
Graphical Abstract: First-principles simulations on zinc gallate solid phosphors (ZGO) containing a chromium dopant and antisite defects (left) rationalize the attractive interactions between the various elements. A large number of antisite pair configurations is investigated and compared with isolated antisite defects. Defect energies point out the stability of the antisite defects in ZGO. Local structural distortions are reported, and charge transfer mechanisms are analyzed based on theoretical density of states (right) and Hirshfeld-I charges.

Abstract

Zinc gallate doped with chromium is a recently developed near-infrared emitting persistent phosphor, which is now extensively studied for in vivo bioimaging and security applications. The precise mechanism of this persistent luminescence relies on defects, in particular, on antisite defects and antisite pairs. A theoretical model combining the solid host, the dopant, and/or antisite defects is constructed to elucidate the mutual interactions in these complex materials. Energies of formation as well as dopant, and defect energies are calculated through density-functional theory simulations of large periodic supercells. The calculations support the chromium substitution on the slightly distorted octahedrally coordinated gallium site, and additional energy levels are introduced in the band gap of the host. Antisite pairs are found to be energetically favored over isolated antisites due to significant charge compensation as shown by calculated Hirshfeld-I charges. Significant structural distortions are found around all antisite defects. The local Cr surrounding is mainly distorted due to a ZnGa antisite. The stability analysis reveals that the distance between both antisites dominates the overall stability picture of the material containing the Cr dopant and an antisite pair. The findings are further rationalized using calculated densities of states and Hirshfeld-I charges.

Virtual Winterschool 2016: Computational Solid State Physics & Chemistry

In just an hour, I’ll be presenting my talk at the virtual winterschool 2016. In an attempt to tempt fate as much as possible I will try to give/run real-time examples on our HPC in Gent, however at this moment no nodes are available yet to do so. Let’s keep our fingers crossed and see if it all works out.

Abstract

Modern materials research has evolved to the point where it is now common practice to manipulate materials at nanometer scale or even at the atomic scale (e.g. Intel’s skylake architecture with 14nm features, atomic layer deposition and surface structure manipulations with an STM-tip). At these scales, quantum mechanical effects become ever more relevant, making their prediction important for the field of materials science.

In this session, we will discuss how advanced quantum mechanical calculations can be performed for solids and indicate some differences with standard quantum chemical approaches. We will touch upon the relevant concepts for performing such calculations (plane-wave basis-sets, pseudo-potentials, periodic boundary conditions,…) and show how the basic calculations are performed with the VASP-code. You will familiarize yourself with the required input files and we will discuss several of the most important output-files and the data they contain.

At the end of this session you should be able to set up a single-point calculation, a structure optimization, a density of states and band structure calculation.

Additional Files/Info

Computational Materials Science: Where Theory Meets Experiments

Authors: Danny E. P. Vanpoucke,
Journal: Developments in Strategic Ceramic Materials:
Ceramic Engineering and Science Proceedings 36(8), 323-334 (2016)
(ICACC 2015 conference proceeding)
Editors: Waltraud M. Kriven, Jingyang Wang, Dongming Zhu,Thomas Fischer, Soshu Kirihara
ISBN: 978-1-119-21173-0
webpage: Wiley-VCH
export: bibtex
pdf: <preprint> 

Abstract

In contemporary materials research, we are able to create and manipulate materials at ever smaller scales: the growth of wires with nanoscale dimensions and the deposition of layers with a thickness of only a few atoms are just two examples that have become common practice. At this small scale, quantum mechanical effects become important, and this is where computational materials research comes into play. Using clever approximations, it is possible to simulate systems with a scale relevant for experiments. The resulting theoretical models provide fundamental insights in the underlying physics and chemistry, essential for advancing modern materials research. As a result, the use of computational experiments is rapidly becoming an important tool in materials research both for predictive modeling of new materials and for gaining fundamental insights in the behavior of existing materials. Computer and lab experiments have complementary limitations and strengths; only by combining them can the deepest fundamental secrets of a material be revealed.

In this paper, we discuss the application of computational materials science for nanowires on semiconductor surfaces, ceramic materials and flexible metal-organic frameworks, and how direct comparison can advance insight in the structure and properties of these materials.

Doping of CeO2 as a Tunable Buffer Layer for Coated Superconductors: A DFT Study of Mechanical and Electronic Properties

Authors: Danny E. P. Vanpoucke,
Journal: Developments in Strategic Ceramic Materials:
Ceramic Engineering and Science Proceedings 36(8), 169-177 (2016)
(ICACC 2015 conference proceeding)
Editors: Waltraud M. Kriven, Jingyang Wang, Dongming Zhu,Thomas Fischer, Soshu Kirihara
ISBN: 978-1-119-21173-0
webpage: Wiley-VCH
export: bibtex
pdf: <preprint> 

Abstract

In layered ceramic superconductor architectures, CeO2 buffer layers are known to form micro cracks during the fabrication process. To prevent this crack formation, doping of the CeO2 layer has been suggested. In this theoretical study, the influence of dopants (both tetravalent and aliovalent) on the mechanical and structural properties of CeO2 is investigated by means of density functional theory. Group IVa and IVb dopants show clearly distinct stability, with the former favouring interface and surface doping, while the latter favour uniform bulk doping. This behaviour is linked to the dopant electronic structure. The presence of charge compensating vacancies is shown to complicate the mechanical and structural picture for aliovalent dopants. We find that the vacancies often counteract the dopant modifications of the host material. In contrast, all dopants show an inverse relation between the bulk modulus and thermal expansion coefficient, independent of their valency and the presence of oxygen vacancies. Based on the study of these idealized systems, new dopants are suggested for applications.

Winterschool on computational chemistry

Starting next week from February 3rd up to February 9th the second virtual winterschool on computational chemistry will take place. This week-long winter school is packed with interesting webinars given by experts from all over the world (among others Kieron Burke and John Perdew, jep those of the DFT-functionals we are using) and me. I’ll be presenting an introductory tutorial in solid state calculations and how to use VASP for this task.

Registration for this winter school is free, and since it takes place on the world wide web, there is still room at the back :-). (In addition to a lack of worries whether or not you will be able to get your hands on a last minute plane-ticket or hotel-room and which funding agency might reimburse those tickets.) I’ll be running example-calculations real time, and hope my sidekick will perform to expectation.

Review of 2015

With 2015 having past on moving quickly toward oblivion, and 2016 freshly knocking at our door, it is time to look back and contemplate what we have done over the course of the previous year.

Publications: +5

 

Journal covers:+1Cover image CrystEngComm 2015 Vol 17 Issue 45

 

Completed refereeing tasks: +11

  • ACS Catalysis
  • Frontiers in Physics (2x)
  • Journal of Physics: Condensed Matter
  • Proceedings for 39th International Conference & Exposition on Advanced Ceramics & Composites
  • Applied Physics Letters (2x)
  • Materials Science in Semiconductor Processing
  • Journal of Superconductivity and Novel Magnetism (2x)
  • Surface Science

 

Conferences: +3 (Attended) & + 1 (Organized)

 

Master-students: +1

  • Arthur De Vos : Combined theoretical-experimental study of chromium doped zinc gallate phosphor

 

Jury member of PhD-thesis committee: +1

  • Ir. Yuanyuan Guan
    Title: Development of a method to determine the solubility ranges of intermetallic compounds in metal-metal connections
    PhD candidate at KU Leuven with Prof. Dr. Ir. Nele Moelans
    Department of Materials Engineering

Current size of HIVE:

  • 44K lines of program (code: 71 %)
  • 64 files
  • 40 (command line) options

Hive-STM program:

 

And now, upward and onward, a new year, a fresh start.

HIVE-STM: A simple post-processing tool for simulating STM

While I was working on my PhD-thesis on Pt nanowires at the university of Twente, one of the things I needed was a method for simulating scanning-tunneling microscopy (STM) images in a quick and easy way. This was because the main experimental information on on these nanowires was contained in STM-images.

Because I love programming, I ended up writing a Delphi-program for this task. Delphi, being an Object Oriented version of the Pascal-programming language containing a Visual Components Library, was ideally suited for writing an easy to use program with a graphical user interface (GUI). The resulting STM-program was specifically designed for my personal needs and the system I was working on at that time.

In August 2008, I was contacted by two German PhD students, with the request if it would be possible for them to use my STM program. In October, an American post-doc and a South-Korean graduate student followed with similar requests, from which point onward I started getting more and more requests from researchers from all over the world. Now, seven years later, I decided to put all “HIVE-users” in a small data-base just to keep track of their number and their affiliation. I already knew I send the program to quite a lot of people, but I was still amazed to discover that it were 225 people from 34 countries.

Hive Requests December 2015

Bar-graph showing the evolution in requests for the HIVE-STM program.

There is a slow but steady increase in requests over the years, with currently on average about one request every week. It is also funny to see there was a slight setback in requests both times I started in a new research-group. For 2015, the data is incomplete, as it does not include all requests of the month December. Another way to distribute the requests is by the month of the year. This is a very interesting graph, since it clearly shows the start of the academic year (October). There are two clear minima (March and September), for which the later is probably related due to the fact that it is the last month of before the start of the academic year (much preparation for new courses) and, in case of the solid state community, this month is also filled with conferences. The reason why there is a minimum in March, however, escapes me ( 💡 all suggestions are welcome 💡 ).

Hive requests per month.

Distribution of requests for the HIVE-STM program on a monthly basis.

The geographic distribution of affiliations of those requesting the STM-program shows Europe, Azia and America to take roughly equal shares, while African affiliations are missing entirety. Hopefully this will change after the workshop on visualization and analysis of VASP outputs delivered at the Center for High Performance Computing‘s 9th National Meeting in South Africa by Dr. David Carballal. By far the most requests come from the USA (57), followed by China(23) and then Germany(15). South-Korea(14) unexpectedly takes the fourth place, while the fifth place is a tie between the UK, Spain and India(12 each).

Hive requests demographics 2015

Distribution of Hive requests per country and continent.

All in all, the STM program seems to be of interest to many more researchers than I would have ever expected, and has currently been cited about 25 times, so it is time to add a page listing these papers as examples of what can be done with HIVE(which has in the mean time been done, check out useful link n°2).

Happy Hiving to all of you, and thank you for your trust.

 

Useful link:
[1] More information on the HIVE-STM program and how to acquire it.

[2] List of publications using and citing the HIVE-STM program.

Robbert Dijkgraaf Essay Contest

In the previous posts, I presented my contribution (original Dutch version / English translation) to the Robbert Dijkgraaf essay contest. This year’s theme was on the importance of imagination in science. My girlfriend, Sylvia, also participated in this essay contest. We read each-others contributions as a final check before submission, and at that point it became clear to me I was out of my league 😳 .

During the gala of science in Amsterdam, the winner of the Robbert Dijkgraaf essay contest was made public. And the winner is: Sylvia Wenmackers.

On her blog you can read the winning essay (in Dutch), and you will understand why I immediately knew my essay was outclassed. Congratulations again my dear 😀 .

 

 

Sidekick

This year I participated in the Robbert Dijkgraaf essay-contest 2015.
The central theme of the contest was imagination, and in my contribution
I presented the role of imagination in computational materials science,
and why it is so important for this field

The original Dutch version of the essay can be found here.

 

Imagine a world where you can actually see atoms. Even more, you can use them as LEGOs and manipulate them to do your bidding. Imagine a world in which you can switch off the laws of nature, or create new ones which are more to your liking. In such a world, you are in charge. Welcome to my world: the world of “computational materials science“.

It would be a nice start for a commercial for this research field. The accompanying clip would then show images fading into one another of supercomputers and animations of chemical and biochemical processes at the atomic scale. Moving in a fast-forward pace into our future with science-fiction-like orbital labs where calculated materials are immediately transformed into new medicine, ultra-thin screens and applications for the aerospace industry. scifilabThe ever faster flood of images culminates in the final slogan:”Simulate the future” with a subtext urging you to go study computational materials science. I assume that such a clip would tempt peoples imagination. It addresses our human urge to create, and holds the promise that you can do anything you want, as long as you can imagine it. In fact, your imagination becomes the only limiting factor.

As with most commercial, this one also presents reality slightly more beautiful than it actually is. As for any other scientist in any other field, your contribution to progress as a computational materials scientist is rather more limited than you would like it to be. This is a normal aspect of science. The presented divine omnipotence and omniscience, on the other had, are attainable. As a computational scientist you do have absolute control over the atomic positions and the forces at play. In contrast, an experimental scientist is forced to deal with the quirks of nature and his or her machinery. This omnipotence allows you to create any world you can imagine…inside a computer.

As a scientist, you wish to understand the world around you. This limits the freedom you gained through your omnipotence, unless you would choose to join a team of game-designers. It, however, does not mean that your creativity is curtailed in any way. On the contrary. Where the team of game-designers knows the entire story to be told, including rules and laws of nature relevant for the game world, this is not the case for computational materials science. For the latter it is often their quest to discover the story-line as they go, including relevant laws of nature. As a computational materials scientist, you become the narrator, whose task consist of thinking up new stories time and time again. The narrator, who needs to tweak existing plots, extending or confining story-lines, until the final story fits the shape of reality.

Luckily, you are not alone to bring this daunting task to a successful end. You always have the support of your loyal sidekick: your supercomputer. Using its brute force, your sidekick calculates the effects of any intrigue or plot twist you can imagine. Based on your introductory chapter, in which you describe the world and its natural laws, it will allow the story to unfold. By asking him the right questions, and comparing his answers to reality, you learn which parts of your story don’t really fit reality yet.

Ouroboros benzene. source: wikipediaHow you should rewrite your introductory chapter differs every time. Sometimes it is clear what is going on: an essential character is missing (e.g. an impurity atom which is distorting the crystal lattice), or the character lives at the wrong location (not site A, then let us see about site B?). It becomes more difficult when a character refuses to play the role it was dealt (e.g. Pt atoms that remain invisible for STM, so who is going to play the role of the nanowire we observe?). The most difficult situation occurs with the need for a full rewrite of the introductory chapter. This provides too much freedom, since it is our knowledge of the limitations of reality which provides the necessary support and guidance for drafting the story-line. In such a case, you need an inspiring idea which provides you with a new point of view. Inspiration can come in many forms and at any time, often when least expected. A well-known example is this of the theoretical chemist Kekulé who, in a daydream, saw a snake bite its own tail. As a result Kekulé was able to envision the ring-shape of the benzene molecule. Such wonderful problem solving twists-of-mind are rare. They are often the consequence of long and intense study of a single problem, which drive you to the limit, since they require you to imagine something you have never thought of before. In management-circles this is called “thinking-outside-the-box”, which sound a lot easier than it actually is. It does not mean that all of the sudden everything goes, you always have to bear in mind the actual box you started from.

As a computational materials scientist you have to combine your omnipotence over your virtual world with your power to imagine new worlds, hoping to see a glimmer of reality in the reflections of your silicon chips.