51 results for diamond

Review of 2020

ACOS poster prize 2020

Happy New Year

2020 will forever be the year of viruses for me and a lot of us. At Maastricht University, the year started with a university wide cyber-attack with ransomware. After the computer-viruses came the human viruses, with COVID-19 shutting down one country after the other, and shutting down education systems as well.

Hopefully 2021 will be better behaved, though we know already some of the hurdles which will make life interesting the coming year. COVID-19 is far from over, and it will take at least a year to vaccinate everyone. Furthermore, as of the first of today, the United Kingdom is no longer a part of the EU, making travel inside Europe a little harder again.

But before we launch into these new and interesting times, lets look back at 2020 one last time, keeping up with  tradition. What have I done during the last year of academic merit.

1. Publications: +6 (and currently a handful in progress)

2. Completed refereeing tasks: +17

  • Applied Physics Letters
  • Journal of Physical Chemistry (2x)
  • Computational Materials Science (2x)
  • Materials Chemistry and Physics
  • Journal of Physics: Condensed Matter (5x)
  • Diamond and Related Materials (6x)

3. Conferences & workshops in times of Corona: +3/+1 (Attended & Organised), >+4 internal 

ACOS poster prize 2020

ACOS poster prize 2020

With regard to conferences, 2020 was the year everyone came into contact with the concept of the online conference. Many conferences and events got canceled: such as TEDx@UHasselt (which will return in 2021)

  • ACOS 2020, Online, Oktober 28th, 2020 [poster presentation and video-pitch, 2nd poster prize]
  • RSC Chemical Science Symposium 2020, Online, September 29th-30th, 2020 [iposter presentation]
  • D-NL-HIT project meetings [oral presentations]
    • Virtual Partner Meeting, April 8th, 2020
    • Adhesives Pilot Branch meeting, October 7th, 2020
    • Virtual Partner Meeting, October 15th, 2020
    • UV-Curing Branch meeting, October 22nd, 2020
  • SBDD XXV, Hasselt University, Belgium, March 11th-13th, 2020 [(invited) oral presentation, poster presentation] …On Friday13th Belgium went into it’s first lock-down.
  • Pilot Branch meeting adhesives D-NL-HIT project, Maastricht University, Brighlands campus, February 26th, 2020 [Organised]

4. Science Communication & Social media:   

  • In February 2020, I finally caved and joined Twitter as @DelocalizedD .
  • Added several new repositories to my github account, with the most important ones being:
  • Started a YouTube channel (for the ACOS video pitch)

5. Current size of HIVE:

  • Continued work on a public version of HIVE at github: HIVE 4.x   (26K lines, 9 commands available)
  • 61K lines of program (code: 69 %)
  • ~100 files
  • 49 (command line) options

6. Hive-STM program:

And now, upward and onward, a new year, a fresh start.

Permanent link to this article: https://dannyvanpoucke.be/review-of-2020/

Partitioning the vibrational spectrum: Fingerprinting defects in solids

Graphical abstract Computational Materials Science 181, 109736 (2020)
Authors:  Danny E. P. Vanpoucke
Journal: Computational Materials Science 181, 109736 (2020)
doi: 10.1016/j.commatsci.2020.109736
IF(2019): 2.863
export: bibtex
pdf: <ComputMaterSci>   (Open Access)
github: <Hive-toolbox>

 

Graphical abstract Computational Materials Science 181, 109736 (2020)
Graphical Abstract: Finger printing defects in diamond through the creation of the vibrational spectrum of a defect.

Abstract

Vibrational spectroscopy techniques are some of the most-used tools for materials
characterization. Their simulation is therefore of significant interest, but commonly
performed using low cost approximate computational methods, such as force-fields.
Highly accurate quantum-mechanical methods, on the other hand are generally only used
in the context of molecules or small unit cell solids. For extended solid systems,
such as defects, the computational cost of plane wave based quantum mechanical simulations
remains prohibitive for routine calculations. In this work, we present a computational scheme
for isolating the vibrational spectrum of a defect in a solid. By quantifying the defect character
of the atom-projected vibrational spectra, the contributing atoms are identified and the strength
of their contribution determined. This method could be used to systematically improve phonon
fragment calculations. More interestingly, using the atom-projected vibrational spectra of the
defect atoms directly, it is possible to obtain a well-converged defect spectrum at lower
computational cost, which also incorporates the host-lattice interactions. Using diamond as
the host material, four point-defect test cases, each presenting a distinctly different
vibrational behaviour, are considered: a heavy substitutional dopant (Eu), two intrinsic
point-defects (neutral vacancy and split interstitial), and the negatively charged N-vacancy
center. The heavy dopant and split interstitial present localized modes at low and high
frequencies, respectively, showing little overlap with the host spectrum. In contrast, the
neutral vacancy and the N-vacancy center show a broad contribution to the upper spectral range
of the host spectrum, making them challenging to extract. Independent of the vibrational behaviour,
the main atoms contributing to the defect spectrum can be clearly identified. Recombination of
their atom-projected spectra results in the isolated spectrum of the point-defect.

Permanent link to this article: https://dannyvanpoucke.be/paper_vibrdefect-en/

SBDD 25 (aka the COVID19 edition)

Poster SBDD 25 conference, Hasselt 2020

Last Wednesday, the 25th edition of the Hasselt Diamond workshop started. The central topic of this celebratory edition was focused on surfaces, perfectly suited to present some of my more recent diamond based work.[1][2] Just as the previous years, the program was packed with interesting talks on anything diamond. Phosphorous doped diamond seemed to be the “new thing” this year, but I could be biased, as I was speaking on phosphorous adsorption myself. Due to a cancellation, I found myself being asked on Monday afternoon to present my work as a talk 😎 , on Wednesday morning 😯 . Because I had been a bit too ambitious in my conference abstract, this talk ended up being nicely complementary to my poster.

Poster SBDD 25 conference, Hasselt 2020

Unfortunately, this celebratory edition also fell victim to the COVID-19 crisis. In addition to being the most popular conversation topic—a close second to diamond research—, it also had a very real impact on the conference itself. The COVID-19 crisis resulted in a drop of attendance from 238 people in 2019 to 143 this year.  In addition, the quickly changing situation worldwide lead to last minute cancellations due to travel restrictions. On Thursday evening, the conference site went into lock down. Furthermore, that evening, the Belgian federal government also decided that schools and higher education should be closed, as well as pubs and restaurants, until April 3rd. There was also the urgent request for people to work from home as much as possible. (Consider this a good example of acting NOW aimed at saving people.)

Consider this computational scientist in lock down in his home lab until further notice.

Permanent link to this article: https://dannyvanpoucke.be/sbdd-25-aka-the-covid19-edition/

Review of 2019

Happy New Year

2019 has come and gone. 2020 eagerly awaits getting acquainted. But first we look back one last time, trying to turn this into a old tradition. What have I done during the last year of some academic merit.

Publications: +3 (and currently +5 submitted)

 

Completed refereeing tasks: +9

  • Applied Physics Letters
  • Journal of Physics Communication
  • Super Conducting Science and Technology
  • Crystals
  • Journal of Physics: Condensed Matter (2x)
  • Diamond and Related Materials (3x)

 

Conferences & workshops: +7 (Attended) 

  • Consortium meeting D-NL-HIT, Hochschule Niederrhein, Krefeld, Germany, September 19th 2019
  • Workshop: Coatings Technology & Application of Machine Learning, Hochschule Niederrhein, Krefeld, Germany, September 2nd-6th , 2019
  • Summer School: “Let’s Talk Science”, Antwerp, Belgium, July 2nd, 2019 [invited plenary talk]
  • Summer School on Data Science, Maastricht University, The Netherlands, June 26th-28th,  2019
  • VSC-user day, Brussels, Belgium, June 4th, 2019 [poster presentation]
  • Belgian Physical Society annual meeting 2019, ULB, Brussels, May 22nd, 2019 [poster presentation]
  • SBDD XXIV, Hasselt University, Belgium, March 13th-15th, 2019

 

Science Communication Events: +3  

  • Casting Keynotes TEDxUHasselt:”The Virtual Lab”, November 26th, 2019 [first prize, TEDx talk 2020]
  • Summer School: “Let’s Talk Science”, Antwerp, Belgium, July 2nd, 2019 [invited plenary talk]
  • Universiteit van Vlaanderen: “Kan jij met je computer een snellere smartphone ontwikkelen”, February 19th, 2019 [Live presentation at UvV, Online April 1st]

 

Research Stay: +1           With Prof. Klauss-Uwe Koch, Westfälishe Hochschule, Recklinghausen, Germany, July 29th – August 2nd, 2019

PhD-students: +1             Guillaume Emerick (September 2019-August 2023,PhD student UHasselt-UNamur Project, Belgium, Awarded grant for this project)

Bachelor-students: +1   Siebe Frederix (3rd Bach. Phys., Project: Atoms in Molecules based on force partitioning)

Positions: +1                         Started working on Machine Learning at AMIBM of Maastricht University

 

Current size of HIVE:

  • Finally started a public version of HIVE at github: HIVE 4.x   (3.5K lines, 6 commands available)
  • 60K lines of program (code: 70 %)
  • ~90 files
  • 49 (command line) options

Hive-STM program:

And now, upward and onward, a new year, a fresh start.

Permanent link to this article: https://dannyvanpoucke.be/review-of-2019-en/

Workshop Machine Learning for Coatings (day 1)

Today was the first day of school…not only for my son, but for me as well. While he bravely headed for the second grade of primary school, I was en route to the first day of a week-long workshop on Machine Learning and Coatings technology at the Hochschule Niederrhein in Krefeld. A workshop combining both the practical art of creating coating formulations and the magic of simulation, more specifically machine learning.

During my career as a computational materials researcher, I have worked with almost every type of material imaginable (from solids to molecules, including the highly porous things in between called MOFs), and looked into every aspect available, be it configuration (defects , surfaces, mixtures,…) or materials properties (electronic structure, charge transfer, mechanical behavior and spin configurations). But each and every time, I did this from a purely theoretical perspective*. As a result, I have not set foot in a lab (except when looking for a colleague) since 2002 or 2003, so you can imagine my trepidation at the prospect of having to do “real” lab-work during this workshop.

Participating in such a practical session— even such a ridiculously simple and safe one— is a rather interesting experience. The safety-goggles, white-coat and gloves are cool to wear, true, but from my perspective as a computational researcher who wants to automate things, this gives me a better picture of what is going on. For example, we** carefully weigh 225.3 grams of a liquid compound and add 2.2 grams of another (each with an accuracy of about 0.01 gram). In another cup, we collect two dye compounds (powders), again trying our best to perfectly match the prescribed quantities. But when the two are combined in the mixer it is clear that a significant quantity (multiple grams) are lost, just sticking to the edge of the container and spatula. So much for carefully weighing (of course a pro has tricks and skills to deal with this better than we did, but still). Conclusion: (1)Error bars are important, but hard to define. (2) Mixtures made by hand or by a robot should be quite different in this regard.

For the theoretical part of my brain, mixing 10 compounds is just putting them in the same box and stir, mix or shake. Practice can be quite different, especially if you need 225 grams of compound A, and 2.2 grams of compound B. This means that for the experimentalist there is a “natural order” for doing things. This order does not exist at the theoretical side of the spectrum***, where I build my automation and machine learning. This, in addition to the implicit interdependence of combined compounds, gives the high-dimensional space of possible mixtures a rather contorted shape. This gives rise to several questions begging for answers, such as: how important is this order, and can we (ab)use all this to make our search space smaller (but still efficient to sample).

At the end of the day, I learned a lot of interesting things and our team of three ended up with a nice raspberry pink varnish.

Next, day two, where we will characterize our raspberry pink varnish.

 

Footnotes

* Yes, I do see how strange this may appear for someone whose main research focus is aimed at explaining and predicting experiments. 🙂
** We were divided in teams of 2-3 people, so there were people with actual lab skills nearby to keep me safe. However, if this makes you think I was just idly present in the background, I have to disappoint you. I am brave enough to weigh inanimate powders and slow flowing resins 😉 .
*** Computational research in its practice uses aspects of both the experimental and theoretical branches of research. We think as theoreticians when building models and frameworks, and coax our algorithms to a solution with a gut-feeling and Fingerspitzengefühl only experimentalists can appreciate.

Permanent link to this article: https://dannyvanpoucke.be/dnlhit_mlworkshop_day1-en/

Start to science-communicate

Simulated STM of nanowires projected on the Gravensteen (Ghent) during the 2012 Light Festival). Courtesy of Glenn Pollefeyt

Today and tomorrow, there is a 2-day summer school on science communication held at the University of Antwerp: Let’s Talk Science! During this summer school there are a large number of workshops to participate in, and lectures to attend, dealing with all aspects of science communication.

Wetenschapsbattle Trophy: Hat made by the children for the contestants of the wetenschapsbattle. Mine has diamonds and computers. 🙂

I was invited to represent Hasselt University (and science communication done by its members) during the plenary panel session starting the summer school. The goal of this plenary session was to share our experiences and thoughts on science communication. The contributions varied from hands-on examples to more abstract presentations of what to keep in mind, including useful tips. The central aim of my presentation was directed at identifying the boundary between science communication and scientific communication. Or more precisely, showing that this border may be more artificial than we are aware of. By showing that everyone’s unique in his/her expertise and discipline, I provided the link between conference presentations and presentations for the general public. I traveled through my history of science communication, starting in the middle: with the Science Battle. An event, I wrote about before, where you are asked to explain your work in 15 minutes to an audience of 6-to 12-year-olds. Then I worked my way back via my blog and contributions to “Ik heb been vraag” (such as: if you drop a penny from the Eiffel tower, will this kill someone on the ground?) to the early beginning of my research: simulating STM images. In the latter case, although I was talking to experts in their field (experimental growth and characterization), their total lack of experience in modelling and quantum mechanical simulations transformed my colleagues into “general public”. This is an important aspect to realize, not only for science communication, but also for scientific communication. As a consequence this also means that most of the tips and tricks applicable to science communication are also applicable to scientific communication.

For example: tell a coherent story. As noted by one of my favorite authors – Terry Pratchett – the human species might have better been called “Pan Narrans”, the storytelling ape. We tell stories and we remember by stories. This is also a means to make your scien(ce/tific) communication more powerful. I told the story of my passion during science explained and my lecture for de Universiteit van Vlaanderen.

A final point I touched is the question of “Why?”. Why should you do science communication? Some may note that is our duty as scientists, since we are payed with taxpayer money. But personally I believe this is not a good incentive. Science communication should originate from your own passion. It should be because you want to, instead of because you have to. If you want to, it is much easier to show you passion, show your interest, and also take the time to do it.

This brought me back to my central theme: Science communication can be simple and small. E.g. projecting simulated STM images on the wall’s of the medieval castle in Ghent (Gravensteen) during a previous edition of the Ghent Light Festival.

Simulated STM of nanowires projected on the Gravensteen (Ghent) during the 2012 Light Festival). Courtesy of Glenn Pollefeyt

Simulated STM of nanowires projected on the Gravensteen (Ghent) during the 2012 Light Festival). Courtesy of Glenn Pollefeyt

Permanent link to this article: https://dannyvanpoucke.be/start-to-science-communicate-en/

Annual Meeting of the Belgian Physical Society 2019

BPS 2019 conference group picture

Yesterday, it was the annual meeting of the Belgian Physical Society, a nice event where Belgian physicists come together to present their latest work. It also provides a good opportunity for junior scientist to present their work (e.g. through the young speaker contest, an event I won in 2011).

The three students competing for the young speaker award presented three very interesting topics going from the creation of Aharonov-Bohm cages over the observation of high energy cosmic rays with detectors of several thousand square kilometers to the temperature determination of clusters. This years young speaker award went very deservedly to Daniela Mockler for her work on the measurement of cosmic rays.

Before lunch there was the usual conference picture (can you spot me? 😎 )

BPS 2019 conference group picture

After our lunch there was the poster session. This year, I decided only to present a poster of my work on vibrational spectra. It combined work on Eu defects in diamond, the vibrational spectrum of Lactose and water and a method for fingerprinting defects in diamond.

During the parallel sessions, I attended the parallel session on physics education. Domien Van der Elst highlighted the daunting task of dealing with a serious shortage in Physics and Mathematics teachers. He suggest the creation of an online platform to (replace/)supplement physics teachers. Despite the possible benefits (and the fact that some big companies are looking into similar setups) I remain skeptical. My main worry being GDPR (privacy) wise and the growing trend that software users are more and more considered as sources providing data and private information to mine and use for a companies benefit (not the software user). The second talk by Bart Huyskens was very inspiring. From his practical experience as a high school teacher, he develops, together with a colleague, hardware, software and courseware for STEM projects. And when he says STEM projects he means it: projects containing ALL parts of a STEM education. Hearing him talk, it is not hard to start dreaming up possible projects, both short and long term. The third and final presentation of the session was by Phillipe Leonard on the concept of “Challenge Labs“. During these labs, teams of students get a “simple problem” to solve. However, while trying to solve the the problem, they discover nothing is what it seems, and they need to learn to think outside the box. This definitely is an interesting method of teaching (assuming good support by the teacher involved) which has the possibility to lift students to a higher level.

After the coffee break, I attended the remainder of the condensed matter session. During this session Michael Sluydts presented his Machine-Learning work on dopants in Si and Ge. An approach which should be very suitable for diamond as well.

 

All in all a very interesting day.

Permanent link to this article: https://dannyvanpoucke.be/annual-meeting-of-the-belgian-physical-society-2019/

Newsflash: Materials of the Future

This summer, I had the pleasure of being interviewed by Kim Verhaeghe, a journalist of the EOS magazine, on the topic of “materials of the future“. Materials which are currently being investigated in the lab and which in the near or distant future may have an enormous impact on our lives. While brushing up on my materials (since materials with length scales of importance beyond 1 nm are generally outside my world of accessibility), I discovered that to cover this field you would need at least an entire book just to list the “materials of the future”. Many materials deserve to be called materials of the future, because of their potential. Also depending on your background other materials may get your primary attention.

In the resulting article, Kim Verhaeghe succeeded in presenting a nice selection, and I am very happy I could contribute to the story. Introducing “the computational materials scientist” making use of supercomputers such as BrENIAC, but also new materials such as Metal-Organic Frameworks (MOF) and shedding some light on “old” materials such as diamond, graphene and carbon nanotubes.

Permanent link to this article: https://dannyvanpoucke.be/newsflash-materials-of-the-future/

Science Figured out

Diamond and CPU's, now still separated, but how much longer will this remain the case? Top left: Thin film N-doped diamond on Si (courtesy of Sankaran Kamatchi). Top right: Very old Pentium 1 CPU from 1993 (100MHz), with µm architecture. Bottom left: more recent intel core CPU (3GHz) of 2006 with nm scale architecture. Bottom right: Piece of single crystal diamond. A possible alternative for silicon, with 20x higher thermal conductivity, and 7x higher mobility of charge carriers.
Diamond and CPU's, now still separated, but how much longer will this remain the case? Top left: Thin film N-doped diamond on Si (courtesy of Sankaran Kamatchi). Top right: Very old Pentium 1 CPU from 1993 (100MHz), with µm architecture. Bottom left: more recent intel core CPU (3GHz) of 2006 with nm scale architecture. Bottom right: Piece of single crystal diamond. A possible alternative for silicon, with 20x higher thermal conductivity, and 7x higher mobility of charge carriers.

Diamond and CPU’s, now still separated, but how much longer will this remain the case?
Top left: Thin film N-doped diamond on Si (courtesy of Sankaran Kamatchi). Top right: Very old Pentium 1 CPU from 1993 (100MHz), with µm architecture. Bottom left: more recent intel core CPU (3GHz) of 2006 with nm scale architecture. Bottom right: Piece of single crystal diamond. A possible alternative for silicon, with 20x higher thermal conductivity, and 7x higher mobility of charge carriers.

Can you pitch your research in 3 minutes, this is the concept behind “wetenschap uitgedokterd/science figured out“. A challenge I accepted after the fun I had at the science-battle. If I can explain my work to a public of 6 to 12 year-olds, explaining it to adults should be possible as well. However, 3 minutes is very short (although some may consider this long in the current bitesize world), especially if you have to explain something far from day-to-day life and can not assume any scientific background.

Where to start? Capture the imagination: “Imagine a world where you are a god.

Link back to the real world. “All modern-day high-tech toys are more and more influenced by the atomic scale details.” Over the last decade, I have seen the nano-scale progress slowly but steadily into the realm of real-life materials research. This almost invisible trend will have a huge impact on materials science in the coming decade, because more and more we will see empirical laws breaking down, and it will become harder and harder to fit trends of materials using a classical mindset, something which has worked marvelously for materials science during the last few centuries. Modern and future materials design (be it solar cells, batteries, CPU’s or even medicine) will have to rely on quantum mechanical intuition and hence quantum mechanical simulations. (Although there is still much denial in that regard.)

Is there a problem to be solved? Yes indeed: “We do not have quantum mechanical intuition by nature, and manipulating atoms is extremely hard in practice and for practical purposes.” Although popular science magazines every so often boast pictures of atomic scale manipulation of atoms and the quantum regime, this makes it far from easy and common inside and outside the university lab. It is amazing how hard these things tend to get (ask your local experimental materials research PhD) and the required blood, sweat and tears are generally not represented in the glory-parade of a scientific publication.

Can you solve this? Euhm…yes…at least to some extend. “Computational materials research can provide the quantum mechanical intuition we human beings lack, and gives us access to atomic scale manipulation of a material.” Although computational materials science is seen by experimentalists as theory, and by theoreticians as experiments, it is neither and both. Computational materials science combines the rigor and control of theory, with access to real-life systems of experiments. It, unfortunately also suffers the limitations of both: as the system is still idealized (but to much lesser extend than in theoretical work) and control is not absolute (you have to follow where the algorithms take you, just as an experimentalist has to follow where the reaction takes him/her). But, if these strengths and weaknesses are balanced wisely (requires quite a few years of experience) an expert will gain fundamental insights in experiments.

Animation representing the buildup of a diamond surface in computational work.

Animation representing the buildup of a diamond surface in computational work.

As a computational materials scientist, you build a real-life system, atom by atom, such that you know exactly where everything is located, and then calculate its properties based on the rules of quantum mechanics, for example. In this sense you have absolute control as in theory. This comes at a cost (conservation of misery 🙂 ); where nature itself makes sure the structure is the “correct one” in experiments, you have to find it yourself in computational work. So you generally end up calculating many possible structural combinations of your atoms to first find out which is the one most probable to represent nature.

So what am I actually doing?I am using atomic scale quantum mechanical computations to investigate the materials my experimental colleagues are studying, going from oxides to defects in diamond.” I know this is vague, but unfortunately, the actual work is technical. Much effort goes into getting the calculations to run in the direction you want them to proceed (This is the experimental side of computational materials science.). The actual goal varies from project to project. Sometimes, we want to find out which material is most stable, and which material is most likely to diffuse into the other, while at other times we want to understand the electronic structure, to test if a defect is really luminescent, this to trace the source of the experimentally observed luminescence. Or if you want to make it more complex, even find out which elements would make diamond grow faster.

Starting from this, I succeeded in creating a 3-minute pitch of my research for Science Figured out. The pitch can be seen here (in Dutch, with English subtitles that can be switched on through the cogwheel in the bottom right corner).

Some external links:

 

Permanent link to this article: https://dannyvanpoucke.be/talk-science-en/

Fairy tale science or a science fairy tale?

Once upon a time…

Once upon a time, a long time ago—21 days ago to be precise—there was a conference in the tranquil town of Hasselt. Every year, for 23 years in a row, researchers gathered there for three full days, to present and adore their most colorful and largest diamonds. For three full days, there was just that little bit more of a sparkle to their eyes. They divulged where new diamonds could be found, and how they could be used. Three days to could speak without any restriction, without hesitation, about the sixth element which bonds them all. Because all knew the language. They honored the magic of the NV-center and the arcane incantations leading to the highest doping. All, masters of their common mystic craft.

At the end of the third day, with sadness in their harts they said their good-byes and went back, in small groups, to their own ivory tower, far far away. With them, however, they took a small sparkle of hope and expectation, because in twelve full moons they would reconvene. Bringing with them new and grander tales and even more sparkling diamonds, than had ever been seen before.

For most outsiders, the average conference presentation is as clear as an arcane conjuration of a mythological beast. As scientist, we are often trapped by the assumption that our unique expertise is common knowledge for our public, a side-effect of our enthusiasm for our own work.

Clear vs. accurate

In a world where science is facing constant pressure due to the financing model employed—in addition to the up-rise in “fake news” and “alternative facts”— it is important for young researchers to be able to bring their story clearly and accurately.

However, clear and accurate often have the bad habit of counteracting one-another, and as such, maintaining a good balance between the two take a lot more effort than one might expect. Focus on either one aspect (accuracy or clarity) tends to be disastrous. Conference presentations and scientific publications tend to focus on accuracy, making them not clear at all for the non-initiate. Public presentations and news paper articles, on the other hand, focus mainly on clarity with fake news accidents waiting to happen. For example, one could recently read that 7% of the DNA of the astronaut Scott Kelly had changed during a space-flight, instead of a change of in gene-expression. Although both things may look similar, they are very different. The latter presents a rather natural response of the (human) body to any stress situation. The former, however, removes Scott from the human race entirely. Even the average gorilla would be closer related to you and I, than Scott Kelly, as they differ less than 5% in their DNA from our DNA. So keeping a good balance between clarity and accuracy is important, albeit not that easy. Time pressure plays an important role here.

Two extremes?

Wetenschapsbattle Trophy: Each of the contestants of the wetenschapsbattle received a specially designed and created hat from the children of the school judging the contest. Mine has diamonds and computers. 🙂

In the week following the diamond conference in Hasselt, I also participated in a sciencebattle. A contest in which researchers have to explain their research to a public of 6-to 12-year-olds in a time-span of 15 minutes. These kids are judge, jury and executioner of the contest so to speak. It’s a natural reflex to place these two events at the opposite ends of a scale. And it is certainly true for some aspects; The entire room volunteering spontaneously when asked for help is something which happens somewhat less often at a scientific conference. However, clarity and accuracy should be equally central aspects for both.

So, how do you explain your complex research story to a crowd of 6-to 12-year-olds? I discovered the answer during a masterclass by The Floor is Yours.  Actually, more or less the same way you should tell it to an audience of adults, or even your own colleagues. As a researcher you are a specialist in a very narrow field, which means that no-one will loose out when focus is shifted a bit more to clarity. The main problem you encounter here, however, is time. This is both the time required to tell your story (forget “elevator pitches”, those are good if you are a used-car salesman, they are not for science) as well as the time required to prepare your story (it took me a few weeks to build and then polish my story for the children).

Most of this time is spent answering the questions: “What am I actually doing?” and “Why am I doing this specifically?“. The quest for metaphors which are both clear and accurate takes quite some time. During this task you tend to suffer, as a scientist, from the combination of your need for accuracy and your deep background knowledge. These are the same inhibitors a scientist encounters when involved in a public discussion on his/her own field of expertise.

Of course you also do not want to be pedantic:

Q: What do you do?

A: I am a Computational Materials Researcher.

Q: Compu-what??

A: 1) Computational = using a computer

2) Materials = everything you see around you, the stuff everything is made of

3) Researcher = Me

However, as a scientist, you may want to use such imaginary discussions during your preparation. Starting from these pedantic dialogues, you trace a path along the answers which interest you most. The topics which touch your scientific personality. This way, you take a step back from your direct research, and get a more broad picture. Also, by telling about theme’s, you present your research from a more broad perspective, which is more easily accessible to your audience: “What are atoms?“, “How do you make diamond?“, “What is a computer simulation?

At the end—after much blood, sweat and tears—your story tells something about your world as a whole. Depending on your audience you can include more or less detailed aspects of your actual day-to-day research, but at its hart, it remains a story.

Because, if we like it or not, in essence we all are “Pan narrans“, storytelling apes.

Permanent link to this article: https://dannyvanpoucke.be/sciencebattle-en/